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Introduction

+Background

v' Histopathology is microscopic examination of tissue, serving
as cancer diagnosis, and treatment decisions.

v The process involves studying the size, shape, and patterns
In cells and tissues from a patient’s clinical records.

v Histopathology can be analyzed either patch-wise or slide-
based.

v Histopathological captions are extracted from diagnostic
reports and paired with image patches.

v Automatic diagnostic reports generation from whole slide
images (WSIs) would reduce pathologists' workload.

1. https://blog.crownbio.com/digital-pathology
2. Scientifc Reports 12 (2022) 19075
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Digital pathology for image analysis.
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Introduction

+Problem Statements

v Histopathology WSIs have limitations due to their large size,
complicating computational analysis.

v MIL divided the WSI into into independence patches for
classification, neglecting viral tissue context and spatial interactions.

v Microscopic WSIs save cost and memory but lack positional data
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and include redundant patches from subjective captures.

(@) Scanner WSI: Precise patch positions are known and
(b) Microscopic WSI: Lacks position data, with redundant
patches from subjective captures.

v Sequential models such as RNNs/LSTMs face vanishing gradients,
limiting long-range dependency capture in pathology data.
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Motivation

A Concise Descriptions: Automated pathological captioning provides text summaries of large
WSiIs, allowing pathologists to focus on critical features.

QO Enhanced Accuracy: Improve diagnostic consistency and support computer-aided diagnosis.

O Role of LLMs & ViTs: Biomedical language models excel at medical text generation, while
Vision Transformers offer robust visual representations.

a Multimodal Integration: Combining ViTs with biomedical language models enables more
precise captioning and classification for improved pathology interpretation.

%J WATERLOO



Literature Review

= Multiple Instance Learning in WSI (Attention-based Aggregation Strategy)
v ABMIL [1]

o Utilizing a learnable neural network to enhance the contribution of each instance via
trainable attention weights

v DSMIL [2]

o Analysis of WSI using multi-scale features and features are extracted from patches through
a self-supervised contrastive learning approach

v TransMIL [3]

o Leveraged the self-attention technique, utilizing the output data of a transformer network to
encode the mutual correlations among instances

v DTFD-MIL [4]

o Determine probability of the instance within the structure of attention-based MIL and
employed to assist in generating and analyzing the image features

[1]. International conference on machine learning, (2018):2127-2136.
[2]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2021) 14318-14328 W UNIVERSITY OF

[3]. Advances in Neural Information Processing Systems, 34(2021):2136-2147. @ WATE R Loo

[4]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2022) 18802—-1881



Literature Review (Cont’d)

= Multiple Instance Learning in WSI (Graph-based Aggregation Strategy)
v DeepGraphSurv [1]

o Developed a graph convolutional neural network, and combined local patch features with
global topological information through spectral graph convolution

v DAS-MIL [2]

o Proposed a novel graph-based multi-instance learning approach and integrated with self-
knowledge distillation to improve information flow across multiple resolutions

AN

GDS-MIL [3]

o Integrated a graph attention networks with MIL to enhance the prognosis indicator (the
Platinum-Free Interval) from WSIs

[1]. International Conference on Medical Image Computing and Computer-Assisted Intervention, (2018): 172-182.
[2]. International conference on medical image computing and computer-assisted intervention, (2023) 248-258. W UNIVERSITY OF

[3]. International Conference on Image Analysis and Processing, (2023):550-562. @ WATE R Loo



Literature Review (Cont’d)

» The most recent works for caption generation are demonstrated here

v Tsuneki et al. [1]
o Developed an automated captioning system using high-resolution WSiIs

o EfficientNetB3 and DenseNetl21l models were pre-trained, and an RNN-based decoder
was used to generate captions

v Qinetal. [2]

Developed a subtype-guided masked transformer network to generate captions using
transformer

Zhou et al. [3]

o Developed multimodal multi-task MIL system called PathM3 [15] was proposed for WSI to
classify and generate captions

<

o Used a query-based transformer to accurately correlate WSIs with diagnostic texts

[1]. International Conference on Medical Imaging with Deep Learning, (2022): 1235-1250.
[2]. arXiv:(2023):2310-20607. W UNIVERSITY OF

[3]. arXiv:(2024):2403-08967. @ WATE R Loo



Research Gaps/Challenges

v Most MIL models overlook long-distance dependencies by neglecting patch
Interactions and spatial positions

v A few of the graph-based MIL tried to overcome these limitations by modeling the
spatial relationships between patches in microscopic images

v' Redundancy in microscopic images leads to excessively dense and repetitive graph
connections, reduces the models’ ability

v RNNs and LSTMs struggle with vanishing gradients while LLMs have their
advanced capability to process and understand complex text

%J WATERLOO



Research Objectives

v Designed an efficient feature extractor which captures the
complex attributes of tissues in histopathological patches

v Employed a clustering method to reduce the redundancy and
established the spatial relationship among the patches

v Proposed a caption-generator model which takes a sequence of
patch-embeddings to generate a diagnostic report for the patient

%J WATERLOO
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Research Contributions

v Designed the TransUAAE-CapGen Architecture, consists of hybrid
UNet-based Adversarial Autoencoder (AAE) and a transformer

v Developed UNet based AAE to extracts complex tissue properties and
transformer to generate the caption

v Proposed the GNN-VITCap Architecture for simultaneous classification
and caption generation

v Applied deep embedded clustering for removal of redundancy, and
graph neural networks to capture spatial relationships

v Integrated visual features into language models, combining visual and
textual modalities to generate context-aware captions

%J WATERLOO
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TransUAAE-CapGen Architecture: WSI Caption Generation
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Architecture of our proposed TransUAAE-CapGen model for histopathological caption generation. @
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UNet-Based AAE Archltecture

AAE combined with UNet, it
captures both local and global
features for improved gy
generalization to unseen data
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Architecture of our proposed hybrid UNet-based AAE model for feature extraction.
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Caption Generator through Transformer
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GNN-VI”

Overview of the GNN-ViTCap framework for microscopic whole slide images classification and captioning.
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Results and Analysis

= Dataset Collection and Description
= Performance Indices

= Simulation Results
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Dataset Collection and Description

= PatchGastric Dataset = BreakHis Dataset
v Stomach  adenocarcinoma  endoscopic v 7,909 microscopic histopathology biopsy images from 82
biopsy samples images, paired with patients
histopathological captions v Image is classified into benign and malignant tumor
v 991 whole slide images with 262,777 categories
extracted patches v Each patch is 700 x 460 pixels in dimension of pixels.

v Each patch is 300 x 300 pixels in dimension Palches

v Patches are aligned with corresponding
histopathological captions extracted from
diagnostic reports

Whole Slide Image

International Conference on Medical Imaging with Deep Learning, (2022): 1235-1250. Caption: atypical epithelium cells with and proliferating atypical forming solid

IEEE Tra.msactions on Biomedi_cal Engineering, 63(2015): 455-1462. tubular observed is observed moderately Differentiated adenocarcinoma solid
Proceedings of Machine Learning Research (2022):1235-1250. w UNIVERSITY OF
N
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Performance Indices

Several performance measures are adopted to evaluate the proposed architectures for
classification.
Confusion Matrix

v o 1 TP Actual
Precision = ———0 | TP EP
1 TP Predicted
v’ Recall = = FN TN
N TP+FN
v F1 — Score = +—2IF = Here, the correctly recognized samples are denoted
N 2TP+FP+FN as True Positives (TP), and True Negatives (TN)

1
v AUC = fo TPR(t)dt = The incorrectly classified samples are known as

False Positives (FP), and False Negatives (FN)
= N represents the total number of data samples

= TRP represents true positive rate

%J WATERLOO
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Performance Indices (Cont’d)
Statistical measures to evaluate the performance of the proposed architecture for captioning

P(i)represents the precision for each n—gram size (unigrams,

1
— N NN
v BLEU = p([IX,P(@))™ bigrams, trigrams, etc.).

v METEOR =F, (1—p) - F, is harmonic mean of precision and recall and p denotes the

enalty.
XS €AS ZgnES MatchCount(gn) P y

2s eas Lgpes TotalCount(gn) - MatchedCount(g,) represents the maximum number of
n—grams.

v ROUGE — N =

hn(cj)-hn(sjk)
[ (eI Rn (K| * hu(c;) is a vector of all n—grams of length n in the candidate
caption, and ||k, (c;)]] is its magnitude.

v CIDEn,(c;,5) == %

v CIDET(cj,S;) = Y=y WnCIDET, (¢}, S;)
¢;is the candidate captions, S; is the set of actual captions.

%J WATERLOO



Results: TransUAAE-CapGen Architecture for Captioning

= Quantitative Results

Performance metric (%) of our proposed TransUAAE-CapGen methods for caption generation on test set of PatchGastric dataset

Model Feature Dimension | BLEU-1(%) | BLEU-2(%) | BLEU-3(%) | BLEU@4(%) | METEOR(%) | ROUGE(%) | CIDEr
Trans+EfficientNetB3_AvgP | P X 9 X 9 X 1536 84.5 79.7 76.4 73.9 51.8 81.7 6.50
Trans+EfficientNetB3 MaxP | P x4 X 4 X 1536 88.3 85.1 82.9 81.2 57.2 87.4 7.34

Trans+DenseNet121_AvgP PXx9x9x1024 86.8 82.6 79.6 77.2 54.2 85.7 6.81
Trans+DenseNet121_MaxP PXx4x4x1024 88.4 84.8 82.5 80.7 56.2 87.5 7.45

| TransUAAE-CapGen et 92.1 90.3 88.3 86.8 59.6 89.3 772 ||

Comparison of our proposed method with existing methods using the PatchGastric dataset

Model BLEU@4(%) | METEOR(%) | ROUGE(%) CIDEr [1]. International Conference on Medical Imaging with Deep

LSTM+EfficientNetB3_AvgP [1] 28.3 30.54 49.73 2.31 Learning, (2022): 1235-1250.

— [2]. arXiv:(2023):2310-20607.
LSTM+EfficientNetB3_MaxP [1] 32.4 27.75 46.49 1.62 (3], arXiv:(2024)-2403-0B967.
LSTM+DenseNet121_AvgP [1] 27.2 28.21 46.95 1.54
LSTM+DenseNet121_MaxP [1] 32.3 26.85 45.47 1.48

PathM3 [2] 52.0 39.4 - -

SGMT [3] 55.11 43.17 69.68 4.83

UNIVERSITY OF
TransUAAE-CapGen 86.8 59.6 89.3 1.72 % WATE R Loo
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Results: TransUAAE-CapGen Architecture for Captioning

= Qualitative Results

v Both WSI images were randomly selected from the
test set

v The TransUAAE-CapGen model effectively generates
captions for histopathological images closely matching
reference captions

v The model shows proficiency in capturing detailed
pathological features comparable to expert
descriptions

TransUAAE-CapGen Reference

atypical epithelium | atypical epithelial
cells with and | cells infiltrating
proliferating  atypical | and proliferating
forming solid | while forming a

tubular observed is
observed  moderately
differentiated

adenocarcinoma solid

glandular cavity is
observed moderately
differentiated tubular

highly columnar
with  adenocarcinoma
disordered  papillary
localization proliferates
well a densely
adenocarcinoma

papillary differentiated
adenocarcinoma

adenocarcinoma
highly columnar
epithelium with
disordered  nuclear
localization
proliferates

showing fusion

ductal construction
differentiated tubular
adenocarcinoma
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Results: GNN-VITCap Architecture for Classification

= Research Questions

Q1: Does the proposed GNN-MIL perform better than SOTA MIL methods for microscopic WSI
classification?

Q,: Does the spatial positional information of patches impact the performance of model for
caption generation?

Q3: Do LLMs perform better than LSTM or traditional transformer models for image captioning
of WSI?

Q,.: Do in-domain LLMs perform better than generalized LLMs for generating captions in
histopathological image analysis?

%J WATERLOO
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Results: GNN-VITCap Architecture for Classification (Cont’d)

= Quantitative Results

Performance of GNN-ViTCap against SOTA methods on the BreakHis test dataset for classification.

Model Precision Recall F1-Score AUC

ABMIL [1] 0.835 0.922 0.900 0.871

DSMIL [2] 0.872 0.842 0.856 0.869
TransMIL [3] 0.865 0.908 0.886 0.862

DTFD [4] 0.854 0.925 0.911 0.887
GNN-ViTCap (ResNet-34) 0.917 0.925 0.921 0.906
GNN-ViTCap (ViT-B/16) 0.926 0.942 0.934 0.963

[1]. International conference on machine learning, (2018):2127-2136.

[2]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2021) 14318-14328
[3]. Advances in Neural Information Processing Systems, 34(2021):2136-2147.

[4]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2022) 18802—-1881

%@J WATERLOO
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Results: GNN-VITCap Architecture for Classification (Cont’d)

= [nterpretability: t-SNE feature visualization
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t-SNE feature visualizations for the GNN-ViTCap for the BreakHis test dataset. (a) ResNet-34+DEC+GNN-MIL,

(b) ViT+DEC+GNN-MIL.

%@@

UNIVERSITY OF

WATERLOO



25

Results: GNN-VITCap Architecture for Captioning (Cont’d)
= Quantitative Results

Performance metrics of the proposed GNN-ViITCap against SOTA methods for caption generation on PatchGastric test dataset

Methods Visual Encoder Language Model BLEU-1 BLEU-2 BLEU-3 BLEU@4 METEOR ROUGE CIDEr
EfficientNetB3_AvgP - - - 28.3 30.54 49.73 231
EfficientNetB3_MaxP - - - 324 27.75 46.49 1.62

PatchCap [1] LSTM
DenseNet121_AvgP - - - 27.2 28.21 46.95 1.54
DenseNet121 MaxP - - - 32.3 26.85 45.47 1.48
PathM3 [2] ViT-g/14 Flan-T5 - - - 52.0 394 - -
SGMT [3] CNN Transformer - - - 55.11 43.17 69.68 4.83
BioGPT 0.802 0.748 0.713 0.686 0.485 0.766 5.72
_ _ ClinicalT5-Base 0.851 0.804 0..774 0.753 0.526 0.826 6.72
GNN-ViITCap ViT-B/16
LLamaV2-Chat 0.877 0.838 0.813 0.796 0.557 0.856 1.25
BiomedGPT 0.886 0.851 0.828 0.811 0.567 0.865 7.42

[1]. International Conference on Medical Imaging with Deep Learning, (2022): 1235-1250.
[2]. arXiv:(2023):2310-20607.

[3]. arXiv:(2024):2403-08967 . W UNIVERSITY OF
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Results: GNN-VITCap Architecture for Captioning (Cont’d)

= Qualitative Results

v Again two WSI images were randomly selected from
the test set

v The GNN-VITCap model effectively generates
captions for histopathological images closely matching
reference captions

v The GNN-MIL along with LLMs show proficiency in
capturing detailed pathological features comparable to
expert descriptions

Microscopic WSI

Ground Truth

GNN-ViTCap

tumor tissue, in which
medium to small irreg-
ular ducts infiltrate and
proliferate in the sub-
mucosa can be seen in
the epithelium well dif-
ferentiated tubular ade-
nocarcinoma

tumor tissue in which
medium sized small
irregular ducts with
or proliferate in the
submucosa can be ir-
regular in the epithe-
lium well differenti-
ated tubular adenocar-
cinoma

in the superficial ep-
ithelium tumor tissue
that invades by forming
medium sized to small
irregular ducts is ob-
served moderately dif-
ferentiated adenocarci-
noma

on the superficial
epithelium tumor
tissue that infiltrates
by forming medium
sized to small
irregular  ducts  is
observed moderately
differentiated tubular

UNIVERSITY OF
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Future Works

= Adaptive Clustering for improvement of GNN-VITCap
architecture

v Dynamically determine optimal cluster numbers

v Minimizes information loss and ensures efficient analysis

= Perform parameter-efficient fine-tuning for Large Language
Models

v Minimize computational costs while maintaining model performance and
efficiency.

= Addressing hyperparameter sensitivity and reducing the
risk of model collapse or learning instability

%J WATERLOO
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Conclusions

= We developed a TransUAAE-CapGen architecture to generate the caption from WSI
patches.

= We introduced a novel GNN-VITCap approach to classify WSI as benign and malignant
and generate the caption

= We applied attention-based deep embedded clustering for removal of redundancy, and
graph neural networks to capture spatial relationships

= We compared the model performances with SOTA approaches and experiments show
the model aids healthcare professionals with accurate WSI captions.

%J WATERLOO
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Proposed TransUAAE-CapGen Architecture

Algorithm 1: TransUAAE-CapGen for Histopatho-
logical Caption Generation

Input: Histopathological WSIs X with related captions C

Output: Generated captions C' for given WSIs

Step 1: Patch Extraction: Extract patches P from each
WSI z € X;

Step 2: Preprocessing: Preprocess patches and captions C;

Step 3: Feature Extraction: Train hybrid UNet-based
AAE model for feature extraction ;

for each WSI z € X do
Step 4: Feature Representation: Extract features

Fpatcn using trained UNet-based AAE;
Step 5: Feature Concatenation: Concatenate features
Fpatcn based on patient IDs;

end

Step 6: Model Training: Train transformer model on
concatenated features and captions C' using categorical
cross-entropy loss in (13);

for each WSI z € X do

Step 7: Caption Generation: Generate captions C
using trained transformer model;
end

Output: Generated captions C for all WSIs

%@J WATERLOO
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UNet-Based AAE Architecture (Cont’d)

= AAE uses adversarial training to align its latent space with a prior distribution, and when combined with
UNet, it captures both local and global features for improved generalization to unseen data

v' The reconstruction 10SS L,..,, for the UNet model is
computed as the MSE between the input image x and its

reconstruction x’ (1).

!/ 1 2
Lyecon = MSE (x,x") = ;“xl _xl{”z

v The adversarial loss of the UNet-based AAE architecture

can be calculated using (2).

Ladv = Ex [1og (DZ4s ()| + E,llog(a — DYas(6Y(2))]

Energy & Buildings 285 (2023): 112876
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Encoding Decoding
1 A

o Z ‘| Decoder + X

Input Output

Y
Reconstruction loss

Fig. 6. Architecture of adversarial autoencoder for feature
extraction and output generation.
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UNet-Based AAE Architecture (Cont’d)

v The discriminator loss is calculated as follows:
n

Lp = - lz [Yi- log (DAIIJAE(ZL')) + (1 —y;).log (1 — D[ll]AE(Zi’))]

n«
=1

v Therefore, the generator loss can be calculated as:

Lg = %; log (1 - DXAE(GU(Z)))

v Therefore, the total loss L;,¢4; for the hybrid UNet-based
AAE model be expressed as in (5).

Liotar = A Lyecon + (1- 2. Laay

36

—e— (Generator Loss
0.9 1

—e— Discriminator Loss
0.8 1
0.7 1

0.6

Loss

0.5 1
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0.3 1

0 10 20 30 40 50
Number of Epochs

The loss curve of the training set varies with the number of
epochs of our proposed adversarial-UNet encoder.
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UNet-Based AAE Architecture (Cont’d)

v Training Details: The model is trained over 50 epochs using 30,000
histopathological image samples.

v Model Architecture: The UNet-based AAE has a latent space with dimensions
of 18 x 18 x 512.

v Feature Extraction: Features are extracted from the images using the trained
UNet-based AAE encoder.

v Final Feature Dimension: The final feature dimensions for each WSI with P
patches are P x 18 x 18 x 512,

. %J WATERLOO



Caption Generator through Transformer

= The extracted feature sequences and corresponding captions are fed into a transformer model,
where each patch's features are combined with textual captions.

% Transformer Encoder Block:

Yo | Yy || Yy | Y3
C C C C
v For Inputs: Set of extracted features x S| ) 22 T
Layer norm
v Outputs: Set of vectors . -
o t
. . . : 3 : ¥ N MLP
v Self-attention is the only interaction between = - L —
vectors. 5 Layer norm
= [
: k.
v Layer norm and MLP operate independently per @ 1 i
- - —
vector. = Multi-head sTeIf attention
Positional encoding
i
ZO,U ZO,1 20,2 T 22,2 xg X1 Xz X2
Advances in Neural Information Processing Systems, 2017: 1-11 W UNIVERSITY OF
N
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Caption Generator through Transformer (Cont’d)

% Transformer Decoder Block:

Yo | Ya [[ Y2 Y5
*

I C |
v For Inputs: Set of vector x and set of context vector - i)
C person wearing hat [END] l L ELLL I
Yo | | Y .| | Y% | MILP |
v Outputs: Set of vectors y. I L [ Tavernom ]
L o
. . . 2 CU.U
v Masked Self-attention only interacts with past . xN §" Multi-head attention
. Co.1 k
inputs. ol [T o ——;
f 2 Co2 I Layer norm |
- . . . c01 - (@] g
v Multi-head attention block is NOT self-attention. It | T & = ;
attends over encoder outputs. = T | Mag:;:g;:g;:ead
c,s v v, v, v, | PositionaI‘rencoding |
[START] person wearing hat Xo ) %1 |[ %2 || %5
Advances in Neural Information Processing Systems, 2017: 1-11 W UNIVERSITY OF
N
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Caption Generator through Transformer (Cont’d)

% Self-Attention

Scaled Dot-Product Attention

v Multi-head attention uses scaled dot-product attention with

query(Q), key(K), and value(V) to compute attention weights

as follows:

v For the it" head, the computation of the attention output is as

follows:

v The multi-head attention concatenates individual

Attention (Q,K,V) = softmax (Q

heads (Z; to Z,) as (9):
z; = Attention(QW,S°, KWK, vw})

T

Ja

K)V

MultiHead (Q,K,V) = Concat(zq, ..., Zp)W?

MatMul ] "
\\
\\
.

attention

< Al tl tl

Multi-Head Attention

Linear

Concat

Scaled Dot-Product J& h
Attention -

L L L
[ Linear]_][ Linear],][ Linear]J

L

vV K Q

UNIVERSITY OF
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Caption Generator through Transformer (Cont’d)

“»Loss Function

v The loss for the transformer model is the categorical cross-
entropy loss between the generated caption and the actual
caption:

T
1
LrransuAAE—capGen = — Tz log(p(C¢|Cst, x))
t=1

u %J WATERLOO



Experimental Result Analysis

< Experimental Environment <+ Hyper-parameter Settings
v We performed our experiments on a high- v We performed the experiments for 50 epochs to
computing machine. train the proposed architecture.
v Configuration: (Apple M3 Pro chip with v Batch size was set to 16.
11-core CPU, 14-core GPU and 16-core
Neural Engine). v’ Learning rate was set to 0.001
v All the experiments were conducted using v Weight decay was epoch/length(train)

Python(v3.11.8) and PyTorch (v2.4.0). o
v Adam was used as optimizer.

v’ Categorical cross-entropy was used as the loss
function.

o %J WATERLOO



> Quantitative Results

3.0 1
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2.0
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1.0 1
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Experimental Result Analysis (Cont’d)
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Trans+EfficientNetB3 AvgP
Trans+EfficientNetB3 MaxP
Trans+DenseNetl121_AvgP
Trans+DenseNet121 MaxP
TransUAAE-CapGen

0.4

0.2 1

0.1

O A

10 20

Number of Epochs

2.51

2.0 1

1.0

0.5 1

AT

Trans+EfficientNetB3 AvgP
Trans+EfficientNetB3 MaxP
Trans+DenseNetl121_AvgP
Trans+DenseNet121 MaxP
TransUAAE-CapGen

1.0

0.8 1

0.6 1

10 20

30 40 50

Number of Epochs

Fig. 11. Loss values of the proposed TransUAAE-CapGen approach along with two baseline
feature extraction models. (a) Training (b) Validation.
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e
Proposed GNN-VITCap Architecture

Algorithm 2: GNN-ViTCap architecture for classification and captioning

‘.'-Il v
:':”}t= , K« number of clusters, N «

Input: Dataset: D= {(X™), ¥ C¥)y | s=1,..., N}, Each X' comprises N, patches [p
number of patients g, € + convergence threshold, L + number of layers.

Output: Predicted class j,, and generated captions L-‘[_‘,

for s + 1 to N do

/* Feature Extraction Medule */
Extract features: _,r;:’:' = ._‘.‘l.[p:c") Wk=1,..,1

Concatenate features: P = [}
/# Clustering Module ./
Initialize cluster centroids, p':”',

while :Er{[.;':"" - L'i”“" <cdo

"I
4 N w1
10 =R )

Assign clusters using Student's r-distribution: q:; =
ot REN el o)

Compute target distribution :EJ_ :
Minimize Kullback-Leibler (KL) divergence Ly,

Update cluster centroids “;:I:

end

/#* Representative images selection ./
for each cluster k + 1 to K do

Extract cluster features: Z, = {f"' | i € ;. ):

Compute attention scores ¢, and weights a;, using scaler dot attention mechanism;

Select representative embeddings rr:':

end
Aggregate representative images: R = |r':]‘*:'. ,r':;’];
/#* Graph-Based Aggregation Module =/

Construct similarity matrix using cosine similarity: Sr;:l = (l—
£

i Hz2

i
Compute edge matrix using Gumbel Softmax: £ = 1, if §{% = max o,,($,")), otherwise £ =0;
o o kEMN( T f *

Create graph Gy = (v[“,f[:]),'v“) = R“]ff[“ = tf:[‘:rr
Apply Graph Attention Networks (GAT) for node aggregation;
for each GAT layer ! « (Oto L — 1 do

for each node v € ¥, do

Agpregate node features, hifu" Mal,

end
end
Compute the global mean pooling, AL, from Y,
/% WSI classification ./
Compute the predicted label, §,, = MLP(Af, )
J/# WEI caption generation ./

Compute visual embedding projection, I!,'_:'” = hjﬁ:m C WL

Generate caption (‘.',:Jrj using language models with visual prefix 1!;\. and start-of-sequence token embeddings; w UNIVERSITY OF

2y WATERLOO

end
return Class label §,,, and generated captions L.‘,:A y
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Theoretical Considerations

= Multiple Instance Learning Formulation ,
In another approach, the bag label Yi can be determined

: : : : using an aggregation function followed by a classifier as:
« Multiple Instance Learning organizes data into bags 5 551¢8 y

containing multiple instances, with labels provided -
only at the bag level Y, =g (ﬁm-gpml [:f{xr',]]'-' JLCIPY f{If.n,.)])

« WSI classification is formulated as an MIL problem,
where each slide is considered a bag and its patches
are instances

« According to the standard MIL assumption, the bag
label Yi is described as:

Deep-Learning

Computer Vision | mmmlp WS!-Level
Model Score

i

_ 0 iifZ}.“’=I Vi, =0
1, otherwise

Journal of Pathology Informatics 15 (2024): 100403

% WATERLOO
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Theoretical Considerations (Cont’d)
= Vision Encoder

The WSI X(s) comprises a collection of Np patches or images, P(s) =

N
{p,(f)}k p, where p(s), k denotes the k-th patch of patient s.

The number of patches Np varies depending on the specific WSI and the
individual characteristics of patient s.

f-.f.'r;u — EL,(pm] = Rlxd"

K I

« The patch-level embeddings are concatenated to represent the entire WSI of each patient s

s LK ) [ Y
T”} = f1ﬂ; f; o ;fm e RN,

N,

ConvLSTM architecture W UNIVERSITY OF
N

2y WATERLOO
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Theoretical Considerations (Cont’d)
= Attention-based Deep Embedded Clustering

v The probability of assigning each feature embedding fi(s) to cluster k is determined using the
Student’s t-distribution as follows:

a+l

(s) _ L.s} z
o (- wese)
ik — _atl
S (14152 = 1)
v" The higher value of q{(is,z} indicates a stronger likelihood that the feature embedding fi(s) belongs to
cluster k.

v Therefore, an auxiliary target distribution Ty = {t{f,z}} Is introduced based on the soft assignments

Q) = {q{(l,z}} to refine the clustering process.

v' The target distribution emphasizes high-confidenceassignments and is computed as:

{aj Ny (s)
t{ﬂ ( ) f{zﬁ 1 t.i!i. NeurlIPS, 2017: 6000-6010

I #:J UNIVERSITY OF
S (4 /o)) WATERLOO
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Theoretical Considerations (Cont’d)

= Attention-Based Representative Images

v Let C}, denotes the set of image indices corresponding to cluster k. Therefore, each cluster k contains
N, = |k|images, and the feature embeddings of these images are extracted as follows:

Ze={f" 11 €C} RN

v Then, the embeddings Z;, are mapped into query, key, and value representations using learnable linear
projections:

Qattn —_ kagmf Kattn —_ Zk Wgﬂ:m* Vatm — Zﬁ. W::m
v For each patchi € Cj, an attention score is defined based on the element-wise product of its query
(Q?ILH. B‘ K?it[]'l)
e,:z Nz —, i=1,...,N,.
d,

v Therefore, the softmax function is applied across all patches in the cluster to obtain normalized attention

weight exp(e)

E;\r‘] EKP ( E_l.')

i=1,...,N,

%J WATERLOO



Theoretical Considerations (Cont'd)

= Attention-Based Representative Images (cont’d)

v Therefore, a scalar importance score is computed for each patch using its corresponding
value embedding

)
score; = E a, -
1.
m=1

v" Furthermore, the image witn te nignest score 1S selected as the representative image
within cluster k, and its corresponding embedding is defined as:
' = " e R% where i = argmax score,
k i k ieC, i

v Therefore, the final representative features for patient s is computed as follows:

e

— [5) L5), R EIR Y Kxd,
R =1Ir,r...;ry ] €ER

%J WATERLOO
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Theoretical Considerations (Cont'd)

= Graph-Based Aggregation
« Constructing Graph

v The similarity between nodes is calculated using cosine similarity as:

(5
r{.-rj # )

() i i .
S = {II‘”II = ), Vije(l,.., K}

v where each element Sl.(, ) represents the similarity between image features r ) and r . Therefore, an edge

matrix Ei(,’]?) Is created by applying the Gumbel Softmax function. This process selects the most similar
neighbors for each node, resulting in:

| {1, if 8 = max o (3““
E-'.H.J — " Bet

keN (i)
0, otherwise
v" Therefore, the graph G(s) is defined by its set of nodes V(s) and edges E(s):

= (V,

L.i'J [x)® HJ)

%J WATERLOO



Theoretical Considerations (Cont'd)

= Graph-Based Aggregation
« Graph Neural Network

v' For eachlayerl=o0,1,..., L — 1, the features of node v can be updated as follows:
hﬁ“”“ = p ( Z ﬁi:fmwmhimﬂ)
weEN (1)
v' The attention coefficient 8., between nodes u and v at layer [ is computed as:
exp (o (a0 [WORIWORP] ) )

AT ok .-IIH:.'P . l:llu.-_-L
E E.‘-'ll'p (J'J' (a-..l',ll' [W"“ht: 5 ” W[“hu:’u‘ul ))

weEN (1)

THs)
'ﬂuu -

v’ After L GAT layers, the final node representations h% are obtained, where each h% € Rdout .
Consequently, the WSI representation h;,.,, is generated by applying global mean pooling,

which aggregates all node representations
K

isJ_ =l2h“‘”“ UNIVERSITY OF
mean = 2" % WATERLOO
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Theoretical Considerations (Cont’d)
* Visual Embedding Projection

v To address this, the aggregated image embeddings h;,..,, are transformed using a linear
projection matrix Wc

v" This projection maps the visual embeddings into a dmodel-dimensional space compatible with the
language model’s input embeddings. The visual prefix can be computed as:

v =h W € Rine

(5) mean

ConvLSTM architecture W UNIVERSITY OF
N

2y WATERLOO
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Theoretical Considerations (Cont’d)

Loss Function
Image Captioning Loss

v" In the caption generation task, the visual prefix v’, combined with the start-of-sequence token
embeddings of the caption, is fed into the language model.

v The language model then autoregressively generates caption tokens Ct based on v’ and the
previously generated tokens C1 to Ct—1.

v" The loss for caption generation is calculated using the negative log-likelihood of the ground-
truth captions:

N T
1
Lo =2 2, 21082(C,y |V, Cpsvvs Gy

i=1 =1

v" Therefore, the total loss for the whole slide image captioning can be characterized as:

E’Tmal = f’f.ap + E’Clu

ConvLSTM architecture W UNIVERSITY OF
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Experimental Result Analysis

+ LLMs <+ Hyper-parameter Settings

v BioMedGPT v We performed the experiments for 50 epochs to
v ClinicalT5-Base train the proposed architecture.

v LLMamaV2-Chat v Batch size was set to 16.
v BioGPT v’ Learning rate was set to 0.001
v Embedded dimension was 512

v Number of cluster k = 8 for classification and k=
50 for image captioning

3 %J WATERLOO



Results: Loss Curve for Classification

= Loss
—— ViT-B/16 Ui L3 —— virBi6 e
1.50 7' —e— ResNet34 0.30 1 150 +17¥ ResNet34 0.35 -W
125 1.25 -
§ 1.00 - § 1.00 -
o T
0.75 1 0,75
0.50 1 0.50
023 1 0.25 1
0 20 40 60 80 100 6 210 4|O 6|0 8|0 l(I)O
Number of Epochs Number of Epochs
(a) (b)

Loss curves on the BreakHis dataset using the proposed GNN-VIiTCap with various feature extractors: (a) training
loss, (b) validation loss.
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Results: Loss Curve for Captioning

= Loss
3.0 1
—o— BiomedGPT 0.150
75 —o— (linicalT5-Base
. 0.125 A
—e— [LamaV?2-Chat
2.04 —°— BioGPT 0.100 -
2 15-
-
1.0+
0.5
0.0 -
0 20 40 60 80 100
Number of Epochs
(a)

Loss

2.25

2.00

175+

1.50 1

1.25:4

1.00 1

0:75

0.50 1

HH

BiomedGPT 0:55
ClinicalT5-Base 0.50
LLamaV2-Chat

BioGPT 045 -

100

20 40 60 80
Number of Epochs
(b)

Loss curves on the PatchGastric dataset using the proposed GNN-ViTCap with various LLMs: (a) training loss, (b)
validation loss.

UNIVERSITY OF
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Results: Ablation Studies

= With vs. Without Representative Images

Performance evaluation with (w/) and without (w/o) representative images on the BreakHis and PatchGastric

datasets.
BreakHis PatchGastric
Cluster F,-Score AUC | BLEU@4 METEOR
w/o Rep. Images 0902  0.916 0.763 0.536
w/ Rep. Images 0.934  0.963 0.811 0.567

%/g WATERLOO
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Results: Ablation Studies (cont’d)

= Representative Image Clusters

1'00 0.85
—o— AUC —e- BLEU@4
.
0.98 1 0.80 1 S B
) g g
./".
P
0.96 1 _ — & 5 3 e
Q > /' [3 0.75 ".-/
= o =
< ___...' /' A .
0941 o= : L
0.70 1
0.92
0,65 T T T L T T
0.90 ; T T T . 30 35 40 45 50 55
5 6 7 8 10 Number of Clusters
Number of Clusters
(a) (b)

Performance metrics with various numbers of representative image clusters using attention-based deep embedded
clustering method. (a) BreakHis, (b) PatchGastric datasets.
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Results: Ablation Studies (cont’d)

= Graph Layers Effect

Comparison of AUC (BreakHis) and BLEU@4 (PatchGastric) performances across various graph layers in graph
neural networks. Minimal layers enhance performance by focusing on nearby images and leveraging similarity

No. of Graph Layers
Dataset 1 2 3 4
BreakHis 0.943 0945 0963 0.952
PatchGastric | 0.753 0.784 0.811 0.792

%@ WATERLOO
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