
Centre for Pattern Analysis and Machine Intelligence

Department of Electrical and Computer Engineering

University of Waterloo

Advanced AI for Histopathological Whole Slide Image 
Classification and Captioning

Seminar

Presented by 

S M Taslim Uddin Raju

MASc Candidate



Outline

▪ Introduction

▪ Motivation

▪ Literature Review

▪ Research Gaps/Challenges

▪ Research Objectives

▪ Research Contributions

▪ Experimental Results and Discussions

▪ Conclusions and Future Works

2



Introduction

3

❖Background

✓ Histopathology is microscopic examination of tissue, serving 
as cancer diagnosis, and treatment decisions.

✓ The process involves studying the size, shape, and patterns 
in cells and tissues from a patient’s clinical records.

✓ Histopathology can be analyzed either patch-wise or slide-
based. 

✓ Histopathological captions are extracted from diagnostic 
reports and paired with image patches.

✓  Automatic diagnostic reports generation from whole slide 
images (WSIs) would reduce pathologists' workload. 

(A) Patch-wise and (B) Slide-based histopathological analyses.

Digital pathology for image analysis.

1. https://blog.crownbio.com/digital-pathology

2. Scientifc Reports 12 (2022) 19075



Introduction
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❖Problem Statements

✓ Histopathology WSIs have limitations due to their large size, 

complicating computational analysis.

✓ MIL divided the WSI into into independence  patches for 

classification, neglecting viral tissue context and spatial interactions.

✓ Microscopic WSIs save cost and memory but lack positional data 

and include redundant patches from subjective captures.

✓ Sequential models such as RNNs/LSTMs face vanishing gradients, 

limiting long-range dependency capture in pathology data.

(a) Scanner WSI: Precise patch positions are known and 

(b) Microscopic WSI: Lacks position data, with redundant 
patches from subjective captures.



Motivation

❑ Concise Descriptions: Automated pathological captioning provides text summaries of large 

WSIs, allowing pathologists to focus on critical features.

❑ Enhanced Accuracy: Improve diagnostic consistency and support computer-aided diagnosis.

❑ Role of LLMs & ViTs: Biomedical language models excel at medical text generation, while 

Vision Transformers offer robust visual representations.

❑ Multimodal Integration: Combining ViTs with biomedical language models enables more 

precise captioning and classification for improved pathology interpretation.
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Literature Review 
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▪ Multiple Instance Learning in WSI (Attention-based Aggregation Strategy) 

✓ ABMIL [1] 

o Utilizing a learnable neural network to enhance the contribution of each instance via 

trainable attention weights

✓ DSMIL [2]

o  Analysis of WSI using multi-scale features and features are extracted from patches through 
a self-supervised contrastive learning approach

✓ TransMIL [3] 

o Leveraged the self-attention technique, utilizing the output data of a transformer network to 

encode the mutual correlations among instances

✓ DTFD-MIL [4] 

o Determine probability of the instance within the structure of attention-based MIL and 

employed to assist in generating and analyzing the image features

[1]. International conference on machine learning, (2018):2127–2136.

[2]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2021) 14318–14328

[3]. Advances in Neural Information Processing Systems , 34(2021):2136–2147. 

[4]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2022) 18802–1881



Literature Review (Cont’d)
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▪ Multiple Instance Learning in WSI (Graph-based Aggregation Strategy) 

✓ DeepGraphSurv [1] 

o Developed a graph convolutional neural network, and combined local patch features with 

global topological information through spectral graph convolution 

✓ DAS-MIL [2]

o  Proposed a novel graph-based multi-instance learning approach and integrated with self-

knowledge distillation to improve information flow across multiple resolutions 

✓ GDS-MIL [3] 

o Integrated a graph attention networks with MIL to enhance the prognosis indicator (the 

Platinum-Free Interval) from WSIs

[1]. International Conference on Medical Image Computing and Computer-Assisted Intervention, (2018): 172–182.

[2]. International conference on medical image computing and computer-assisted intervention, (2023) 248–258.

[3]. International Conference on Image Analysis and Processing, (2023):550–562. 



Literature Review (Cont’d)
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▪ The most recent works for caption generation are demonstrated here

✓ Tsuneki et al. [1] 

o Developed an automated captioning system using high-resolution WSIs

o  EfficientNetB3 and DenseNet121 models were pre-trained, and an RNN-based decoder 

was used to generate captions

✓ Qin et al. [2]

Developed a subtype-guided masked transformer network to generate captions using 

transformer

✓ Zhou et al. [3]

o Developed multimodal multi-task MIL system called PathM3 [15] was proposed for WSI to 

classify and generate captions

o Used a query-based transformer to accurately correlate WSIs with diagnostic texts 

[1]. International Conference on Medical Imaging with Deep Learning , (2022): 1235–1250.

[2]. arXiv:(2023):2310–20607. 

[3]. arXiv:(2024):2403–08967.



Research Gaps/Challenges

✓ Most MIL models overlook long-distance dependencies by neglecting patch 

interactions and spatial positions

✓ A few of the graph-based MIL tried to overcome these limitations by modeling the 

spatial relationships between patches in microscopic images

✓ Redundancy in microscopic images leads to excessively dense and repetitive graph 

connections, reduces the models’ ability

✓ RNNs and LSTMs struggle with vanishing gradients while LLMs have their 

advanced capability to process and understand complex text 
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Research Objectives
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✓ Designed an efficient feature extractor which captures the 

complex attributes of tissues in histopathological patches 

✓ Employed a clustering method to reduce the redundancy and 

established the spatial relationship among the patches

✓ Proposed a caption-generator model which takes a sequence of 

patch-embeddings to generate a diagnostic report for the patient



Research Contributions

✓ Designed the TransUAAE-CapGen Architecture, consists of hybrid 

UNet-based Adversarial Autoencoder (AAE) and a transformer

✓ Developed UNet based AAE to extracts complex tissue properties and 

transformer to generate the caption

✓ Proposed the GNN-ViTCap Architecture for simultaneous classification 

and caption generation

✓ Applied deep embedded clustering for removal of redundancy, and 

graph neural networks to capture spatial relationships

✓ Integrated visual features into language models, combining visual and 

textual modalities to generate context-aware captions

11



TransUAAE-CapGen Architecture: WSI Caption Generation

Architecture of our proposed TransUAAE-CapGen  model for histopathological caption generation.
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UNet-Based AAE Architecture

Architecture of our proposed hybrid UNet-based AAE model for feature extraction.
13

• AAE combined with UNet, it 

captures both local and global 

features for improved 

generalization to unseen data



Caption Generator through Transformer

Architecture of the transformer model for caption generation.
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GNN-ViTCap Architecture: WSI Classification and Captioning
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Overview of the GNN-ViTCap framework for microscopic whole slide images classification and captioning. 



Results and Analysis

▪ Dataset Collection and Description

▪ Performance Indices 

▪ Simulation Results
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Dataset Collection and Description 
▪ PatchGastric Dataset

✓ Stomach adenocarcinoma endoscopic 

biopsy samples images, paired with 

histopathological captions 
✓ 991 whole slide images with 262,777 

extracted patches

✓ Each patch is 300 × 300 pixels in dimension

✓ Patches are aligned with corresponding 

histopathological captions extracted from 
diagnostic reports
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▪ BreakHis Dataset

✓ 7,909 microscopic histopathology biopsy images from 82 

patients

✓ Image is classified into benign and malignant tumor 
categories

✓ Each patch is 700 × 460 pixels in dimension of pixels.

International Conference on Medical Imaging with Deep Learning, (2022): 1235–1250.

IEEE Transactions on Biomedical Engineering, 63(2015): 455–1462.

Proceedings of Machine Learning Research   (2022):1235-1250. 

Whole Slide Image

Patches

Caption: atypical epithelium cells with and proliferating atypical forming solid 

tubular observed is observed moderately Differentiated adenocarcinoma solid



▪ Several performance measures are adopted to evaluate the proposed architectures for 

classification.

▪ Here, the correctly recognized samples are denoted 

as True Positives (TP), and True Negatives (TN) 

▪ The incorrectly classified samples are known as 

False Positives (FP), and False Negatives (FN)

▪ N represents the total number of data samples

▪ TRP represents true positive rate 

Performance Indices
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✓ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑁

𝑇𝑃

𝑇𝑃+𝐹𝑃

✓ 𝑅𝑒𝑐𝑎𝑙𝑙 =
1

𝑁

𝑇𝑃

𝑇𝑃+𝐹𝑁

✓ 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
1

𝑁

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁

✓ 𝐴𝑈𝐶 = 0׬

1
𝑇𝑃𝑅 𝑡 𝑑𝑡

Actual

Predicted
TP FP

FN TN

Confusion Matrix



▪ Statistical measures to evaluate the performance of the proposed architecture for captioning

Performance Indices (Cont’d)
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✓ 𝐵𝐿𝐸𝑈 =  𝜌 ς𝑖=1
𝑁 𝑃(𝑖)

1

𝑁

✓ 𝑀𝐸𝑇𝐸𝑂𝑅 = 𝐹𝜇 (1 − 𝜌)

✓ 𝑅𝑂𝑈𝐺𝐸 − 𝑁 =
σ𝑆 ∈𝐴𝑆 σ𝑔𝑛∈𝑆 𝑀𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡(𝑔𝑛)

σ𝑆 ∈𝐴𝑆 σ𝑔𝑛∈𝑆 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡(𝑔𝑛)

✓ 𝐶𝐼𝐷𝐸𝑟𝑛 𝑐𝑗, 𝑆𝑗 =
1

𝑛
 σ

ℎ𝑛 𝑐𝑗 .ℎ𝑛(𝑠𝑗𝑘)

||ℎ𝑛(𝑐𝑗)||.||ℎ𝑛(𝑠𝑗𝑘)||

✓ 𝐶𝐼𝐷𝐸𝑟 𝑐𝑗, 𝑆𝑗 = σ𝑛=1
𝑁 𝑤𝑛𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑗, 𝑆𝑗)

• 𝑃 𝑖 represents the precision for each 𝑛−gram size (unigrams, 

bigrams, trigrams, etc.). 

• 𝐹𝜇 is harmonic mean of precision and recall and 𝜌 denotes the 

penalty.

• 𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝐶𝑜𝑢𝑛𝑡(𝑔𝑛) represents the maximum number of 

𝑛−grams. 

• ℎ𝑛(𝑐𝑗) is a vector of all 𝑛−grams of length 𝑛 in the candidate 

caption, and ||ℎ𝑛 𝑐𝑗 || is its magnitude.

• 𝑐𝑗is the candidate captions, 𝑆𝑗 is the set of actual captions.



Results: TransUAAE-CapGen Architecture for Captioning

Model Feature Dimension BLEU-1(%) BLEU-2(%) BLEU-3(%) BLEU@4(%) METEOR(%) ROUGE(%) CIDEr

Trans+EfficientNetB3_AvgP 𝑃 × 9 × 9 × 1536 84.5 79.7 76.4 73.9 51.8 81.7 6.50

Trans+EfficientNetB3_MaxP 𝑃 × 4 × 4 × 1536 88.3 85.1 82.9 81.2 57.2 87.4 7.34

Trans+DenseNet121_AvgP 𝑃 × 9 × 9 × 1024 86.8 82.6 79.6 77.2 54.2 85.7 6.81

Trans+DenseNet121_MaxP 𝑃 × 4 × 4 × 1024 88.4 84.8 82.5 80.7 56.2 87.5 7.45

TransUAAE-CapGen
𝑷 × 𝟏𝟖 × 𝟏𝟖
× 𝟓𝟏𝟐

92.1 90.3 88.3 86.8 59.6 89.3 7.72
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▪ Quantitative Results

Performance metric (%) of our proposed TransUAAE-CapGen methods for caption generation on test set of PatchGastric dataset

Model BLEU@4(%) METEOR(%) ROUGE(%) CIDEr

LSTM+EfficientNetB3_AvgP [1] 28.3 30.54 49.73 2.31

LSTM+EfficientNetB3_MaxP [1] 32.4 27.75 46.49 1.62

LSTM+DenseNet121_AvgP [1] 27.2 28.21 46.95 1.54

LSTM+DenseNet121_MaxP [1] 32.3 26.85 45.47 1.48

PathM3 [2] 52.0 39.4 - -

SGMT [3] 55.11 43.17 69.68 4.83

TransUAAE-CapGen 86.8 59.6 89.3 7.72

Comparison of our proposed method with existing methods using the PatchGastric dataset

[1]. International Conference on Medical Imaging with Deep 

Learning, (2022): 1235–1250.

[2]. arXiv:(2023):2310–20607. 

[3]. arXiv:(2024):2403–08967.



Results: TransUAAE-CapGen Architecture for Captioning
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▪ Qualitative Results 

✓ Both WSI images were randomly selected from the 

test set

✓ The TransUAAE-CapGen model effectively generates 

captions for histopathological images closely matching 

reference captions

✓ The model shows proficiency in capturing detailed 

pathological features comparable to expert 

descriptions



Results: GNN-ViTCap Architecture for Classification
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▪ Research Questions

• 𝑸𝟏: Does the proposed GNN-MIL perform better than SOTA MIL methods for microscopic WSI 

classification?

• 𝑸𝟐: Does the spatial positional information of patches impact the performance of model for 

caption generation?

• 𝑸𝟑: Do LLMs perform better than LSTM or traditional transformer models for image captioning 

of WSI?

• 𝑸𝟒 : Do in-domain LLMs perform better than generalized LLMs for generating captions in 

histopathological image analysis?



Results: GNN-ViTCap Architecture for Classification (Cont’d)
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▪ Quantitative Results

Model Precision Recall F1−Score AUC

ABMIL [1] 0.835 0.922 0.900 0.871

DSMIL [2] 0.872 0.842 0.856 0.869

TransMIL [3] 0.865 0.908 0.886 0.862

DTFD [4] 0.854 0.925 0.911 0.887

GNN-ViTCap (ResNet-34) 0.917 0.925 0.921 0.906

GNN-ViTCap (ViT-B/16) 0.926 0.942 0.934 0.963

Performance of GNN-ViTCap against SOTA methods on the BreakHis test dataset for classification.

[1]. International conference on machine learning, (2018):2127–2136.

[2]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2021) 14318–14328

[3]. Advances in Neural Information Processing Systems, 34(2021):2136–2147. 

[4]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2022) 18802–1881



Results: GNN-ViTCap Architecture for Classification (Cont’d)

▪ Interpretability: t-SNE feature visualization

t-SNE feature visualizations for the GNN-ViTCap for the BreakHis test dataset. (a) ResNet-34+DEC+GNN-MIL, 

(b) ViT+DEC+GNN-MIL.

24

(a) (b)



Results: GNN-ViTCap Architecture for Captioning (Cont’d)
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▪ Quantitative Results

Performance metrics of the proposed GNN-ViTCap against SOTA methods for caption generation on PatchGastric test dataset

Methods Visual Encoder Language Model BLEU-1 BLEU-2 BLEU-3 BLEU@4 METEOR ROUGE CIDEr

PatchCap [1]

EfficientNetB3_AvgP

LSTM

- - - 28.3 30.54 49.73 2.31

EfficientNetB3_MaxP - - - 32.4 27.75 46.49 1.62

DenseNet121_AvgP - - - 27.2 28.21 46.95 1.54

DenseNet121_MaxP - - - 32.3 26.85 45.47 1.48

PathM3 [2] ViT-g/14 Flan-T5 - - - 52.0 39.4 - -

SGMT [3] CNN Transformer - - - 55.11 43.17 69.68 4.83

GNN-ViTCap ViT-B/16

BioGPT 0.802 0.748 0.713 0.686 0.485 0.766 5.72

ClinicalT5-Base 0.851 0.804 0..774 0.753 0.526 0.826 6.72

LLamaV2-Chat 0.877 0.838 0.813 0.796 0.557 0.856 7.25

BiomedGPT 0.886 0.851 0.828 0.811 0.567 0.865 7.42

[1]. International Conference on Medical Imaging with Deep Learning, (2022): 1235–1250.

[2]. arXiv:(2023):2310–20607. 

[3]. arXiv:(2024):2403–08967.



Results: GNN-ViTCap Architecture for Captioning (Cont’d)

26

▪ Qualitative Results 

✓ Again two WSI images were randomly selected from 

the test set

✓ The GNN-ViTCap model effectively generates 

captions for histopathological images closely matching 

reference captions

✓ The GNN-MIL along with LLMs show proficiency in 

capturing detailed pathological features comparable to 

expert descriptions



Future Works

▪ Adaptive Clustering for improvement of GNN-ViTCap 

architecture 

✓ Dynamically determine optimal cluster numbers

✓ Minimizes information loss and ensures efficient analysis

▪ Perform parameter-efficient fine-tuning for Large Language 

Models

✓ Minimize computational costs while maintaining model performance and 

efficiency.

▪ Addressing hyperparameter sensitivity and reducing the 

risk of model collapse or learning instability 
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Conclusions

▪ We developed a TransUAAE-CapGen architecture to generate the caption from WSI 

patches.

▪ We introduced a novel GNN-ViTCap approach to classify WSI as benign and malignant 

and generate the caption

▪ We applied attention-based deep embedded clustering for removal of redundancy, and 

graph neural networks to capture spatial relationships

▪ We compared the model performances with SOTA approaches and experiments show 

the model aids healthcare professionals with accurate WSI captions.

28
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▪ AAE uses adversarial training to align its latent space with a prior distribution, and when combined with 

UNet, it captures both local and global features for improved generalization to unseen data

✓ The reconstruction loss 𝐿𝑟𝑒𝑐𝑜𝑛  for the UNet model is 

computed as the MSE between the input image 𝑥 and its 

reconstruction 𝑥′ (1). 

𝐿𝑟𝑒𝑐𝑜𝑛 = 𝑀𝑆𝐸 𝑥, 𝑥′ =
1

𝑛
𝑥𝑖  − 𝑥𝑖

′
2

2

✓ The adversarial loss of the UNet-based AAE architecture 

can be calculated using (2).

𝐿𝑎𝑑𝑣 = 𝐸𝑥 log 𝐷𝐴𝐴𝐸
𝑈 𝑥 + 𝐸𝑧[log(𝑎 − 𝐷𝐴𝐴𝐸

𝑈 (𝐺𝑈 𝑧 )] Fig. 6. Architecture of adversarial autoencoder for feature 

extraction and output generation.
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UNet-Based AAE Architecture (Cont’d)

Energy & Buildings 285 (2023): 112876



✓ The discriminator loss is calculated as follows:

𝐿𝐷 = −
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖. log 𝐷𝐴𝐴𝐸
𝑈 𝑧𝑖 + 1 − 𝑦𝑖 . log 1 − 𝐷𝐴𝐴𝐸

𝑈 𝑧𝑖
′

✓ Therefore, the generator loss can be calculated as: 

𝐿𝐺 =
1

𝑛
෍

𝑖=1

𝑛

log 1 − 𝐷𝐴𝐴𝐸
𝑈 𝐺𝑈 𝑧

✓ Therefore, the total loss 𝐿𝑡𝑜𝑡𝑎𝑙 for the hybrid UNet-based 

AAE model be expressed as in (5). 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆. 𝐿𝑟𝑒𝑐𝑜𝑛 + 1 − 𝜆 . 𝐿𝑎𝑑𝑣

The loss curve of the training set varies with the number of 

epochs of our proposed adversarial-UNet encoder.

36

UNet-Based AAE Architecture (Cont’d)



✓  Training Details: The model is trained over 50 epochs using 30,000 

histopathological image samples. 

✓  Model Architecture: The UNet-based AAE has a latent space with dimensions 

of 18 × 18 × 512.

✓  Feature Extraction: Features are extracted from the images using the trained 

UNet-based AAE encoder.

✓  Final Feature Dimension: The final feature dimensions for each WSI with P 

patches are P × 18 × 18 × 512.

37

UNet-Based AAE Architecture (Cont’d)



▪ The extracted feature sequences and corresponding captions are fed into a transformer model, 

where each patch's features are combined with textual captions. 

38

Caption Generator through Transformer

Advances in Neural Information Processing Systems, 2017: 1-11

❖ Transformer Encoder Block:

✓ For Inputs: Set of extracted features x

✓ Outputs: Set of vectors y.

✓ Self-attention is the only interaction between 

vectors.

✓ Layer norm and MLP operate independently per 

vector. 
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Caption Generator through Transformer (Cont’d)

❖ Transformer Decoder Block:

✓ For Inputs: Set of vector x and set of context vector 

c

✓ Outputs: Set of vectors y.

✓ Masked Self-attention only interacts with past 

inputs.

✓ Multi-head attention block is NOT self-attention. It 

attends over encoder outputs. 

Advances in Neural Information Processing Systems, 2017: 1-11



❖ Self-Attention

✓ Multi-head attention uses scaled dot-product attention with 

query(Q), key(K), and value(V) to compute attention weights 
as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘

𝑉

✓ For the 𝑖𝑡ℎ head, the computation of the attention output is as 

follows:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 𝑧1, … , 𝑍ℎ 𝑊𝑜

✓ The multi-head attention concatenates individual attention 
heads (𝑍1 to 𝑍ℎ) as (9): 

𝑧𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾, 𝑉𝑊𝑖

𝑉)

40

Caption Generator through Transformer (Cont’d)



❖Loss Function

✓ The loss for the transformer model is the categorical cross-

entropy loss between the generated caption and the actual 
caption:

𝐿𝑇𝑟𝑎𝑛𝑠𝑈𝐴𝐴𝐸−𝐶𝑎𝑝𝐺𝑒𝑛 = −
1

𝑇
෍

𝑡=1

𝑇

log(𝑝 𝐶𝑡 𝐶<𝑡, 𝑥 )
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Caption Generator through Transformer (Cont’d)



❖ Experimental Environment 

✓ We performed our experiments on a high-

computing machine.

✓ Configuration: (Apple M3 Pro chip with 

11-core CPU, 14-core GPU and 16-core 

Neural Engine). 

✓ All the experiments were conducted using 

Python(v3.11.8) and PyTorch (v2.4.0).

❖Hyper-parameter Settings

✓We performed the experiments for 50 epochs to 

train the proposed architecture.

✓ Batch size was set to 16.

✓ Learning rate was set to 0.001

✓Weight decay was epoch/length(train)

✓ Adam was used as optimizer.

✓ Categorical cross-entropy was used as the loss 

function.
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Experimental Result Analysis



➢ Quantitative Results

Fig. 11. Loss values of the proposed TransUAAE-CapGen approach along with two baseline 

feature extraction models. (a) Training (b) Validation.
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(a) (b)

Experimental Result Analysis (Cont’d)



Proposed GNN-ViTCap Architecture
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Theoretical Considerations

45

▪ Multiple Instance Learning Formulation 

• Multiple Instance Learning organizes data into bags 

containing multiple instances, with labels provided 

only at the bag level

• WSI classification is formulated as an MIL problem, 

where each slide is considered a bag and its patches 

are instances

• According to the standard MIL assumption, the bag 

label 𝑌𝑖 is described as:

In another approach, the bag label 𝑌𝑖 can be determined 
using an aggregation function followed by a classifier as:

Journal of Pathology Informatics 15 (2024): 100403



• The WSI X(s) comprises a collection of Np patches or images, 𝑃 𝑠 =

𝑝𝑘
𝑠

𝑘

𝑁𝑝
, where p(s), k denotes the k-th patch of patient s. 

• The number of patches Np varies depending on the specific WSI and the 

individual characteristics of patient s.

Theoretical Considerations (Cont’d)

46

ConvLSTM architecture

▪ Vision Encoder

• The patch-level embeddings are concatenated to represent the entire WSI of each patient 𝑠



Theoretical Considerations (Cont’d)

✓ The probability of assigning each feature embedding 𝑓𝑖
(𝑠)

 to cluster 𝑘 is determined using the 

Student’s 𝑡-distribution as follows:

✓ The higher value of 𝑞 𝑖𝑘
(𝑠)

 indicates a stronger likelihood that the feature embedding 𝑓𝑖
(𝑠)

 belongs to 

cluster 𝑘.

✓ Therefore, an auxiliary target distribution 𝑇(𝑠)  = 𝑡 𝑖𝑘
(𝑠)

 is introduced based on the soft assignments 

𝑄(𝑠)  = 𝑞 𝑖𝑘
(𝑠)

 to refine the clustering process.

✓ The target distribution emphasizes high-confidenceassignments and is computed as:
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▪ Attention-based Deep Embedded Clustering

NeurIPS, 2017: 6000–6010



Theoretical Considerations (Cont’d)

✓ Let 𝐶𝑘 denotes the set of image indices corresponding to cluster 𝑘. Therefore, each cluster 𝑘 contains 

𝑁𝑘 = 𝑘 images, and the feature embeddings of these images are extracted as follows:

✓ Then, the embeddings 𝑍𝑘 are mapped into query, key, and value representations using learnable linear 

projections: 

✓ For each patch 𝑖 ∈  𝐶𝑘, an attention score is defined based on the element-wise product of its query

✓ Therefore, the softmax function is applied across all patches in the cluster to obtain normalized attention 

weight

48

▪ Attention-Based Representative Images



Theoretical Considerations (Cont’d)
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▪ Attention-Based Representative Images (cont’d) 

✓ Therefore, a scalar importance score is computed for each patch using its corresponding 

value embedding

✓ Furthermore, the image with the highest score is selected as the representative image 

within cluster 𝑘, and its corresponding embedding is defined as:

✓ Therefore, the final representative features for patient 𝑠 is computed as follows:



Theoretical Considerations (Cont’d)

50

▪ Graph-Based Aggregation

• Constructing Graph

✓ The similarity between nodes is calculated using cosine similarity as: 

✓ where each element 𝑆𝑖,𝑗
(𝑠)

 represents the similarity between image features 𝑟𝑖
(𝑠)

 and 𝑟𝑗
𝑠. Therefore, an edge 

matrix 𝐸𝑖,𝑗
(𝑝)

 is created by applying the Gumbel Softmax function. This process selects the most similar 

neighbors for each node, resulting in: 

✓ Therefore, the graph G(𝑠) is defined by its set of nodes V(𝑠) and edges E(𝑠):



Theoretical Considerations (Cont’d)

51

▪ Graph-Based Aggregation

• Graph Neural Network

✓ For each layer 𝑙 = 0, 1, … , 𝐿 − 1, the features of node 𝑣 can be updated as follows:

✓ The attention coefficient 𝛽𝑣𝑢
𝑙  between nodes 𝑢 and 𝑣 at layer 𝑙 is computed as:

✓ After 𝐿 GAT layers, the final node representations ℎ𝑣
𝐿 are obtained, where each ℎ𝑣

𝐿 ∈ ℝ𝑑out . 
Consequently, the WSI representation ℎ𝑚𝑒𝑎𝑛

𝑠  is generated by applying global mean pooling, 
which aggregates all node representations



✓ To address this, the aggregated image embeddings ℎ𝑚𝑒𝑎𝑛
𝑠 , are transformed using a linear 

projection matrix 𝑊𝑐 

✓ This projection maps the visual embeddings into a 𝑑model-dimensional space compatible with the 

language model’s input embeddings. The visual prefix can be computed as:

Theoretical Considerations (Cont’d)

52

ConvLSTM architecture

▪ Visual Embedding Projection



Theoretical Considerations (Cont’d)
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ConvLSTM architecture

▪ Loss Function
▪ Image Captioning Loss

✓ In the caption generation task, the visual prefix 𝑣′, combined with the start-of-sequence token 
embeddings of the caption, is fed into the language model. 

✓ The language model then autoregressively generates caption tokens 𝐶𝑡 based on 𝑣′ and the 
previously generated tokens 𝐶1 to 𝐶𝑡−1.

✓ The loss for caption generation is calculated using the negative log-likelihood of the ground-
truth captions:

✓ Therefore, the total loss for the whole slide image captioning can be characterized as:



❖ LLMs

✓ BioMedGPT

✓ ClinicalT5-Base

✓ LLMamaV2-Chat

✓ BioGPT

❖Hyper-parameter Settings

✓We performed the experiments for 50 epochs to 

train the proposed architecture.

✓ Batch size was set to 16.

✓ Learning rate was set to 0.001

✓ Embedded dimension was 512

✓ Number of cluster k = 8 for classification and k= 

50 for image captioning
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Experimental Result Analysis



Results: Loss Curve for Classification
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(a) (b)

▪ Loss

Loss curves on the BreakHis dataset using the proposed GNN-ViTCap with various feature extractors: (a) training 

loss, (b) validation loss.



Results: Loss Curve for Captioning
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(a) (b)

▪ Loss

Loss curves on the PatchGastric dataset using the proposed GNN-ViTCap with various LLMs: (a) training loss, (b) 

validation loss.



Results: Ablation Studies

57

▪ With vs. Without Representative Images

Performance evaluation with (𝑤∕) and without (𝑤∕𝑜) representative images on the BreakHis and PatchGastric 

datasets.



Results: Ablation Studies (cont’d)
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▪ Representative Image Clusters

Performance metrics with various numbers of representative image clusters using attention-based deep embedded 

clustering method. (a) BreakHis,  (b) PatchGastric datasets.

(a)                                                                                   (b)



Results: Ablation Studies (cont’d)
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▪ Graph Layers Effect

Comparison of AUC (BreakHis) and BLEU@4 (PatchGastric) performances across various graph layers in graph 

neural networks. Minimal layers enhance performance by focusing on nearby images and leveraging similarity
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